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Thermodynamical fingerprints of fractal spectra
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We investigate the thermodynamics of model systems exhibiting two-scale fractal spectra. In particular, we
present both analytical and numerical studies on the temperature dependence of the vibrational and electronic
specific heats. For phonons, and for bosons in general, we show that the average specific heat can be associated
to the averagépower law density of states. The corrections to this average behavior are log-periodic oscil-
lations, which can be traced back to the self-similarity of the spectral staircase. In the electronic problem, even
if the thermodynamical quantities exhibit a strong dependence on the particle number, regularities arise when
special cases are considered. Applications to substitutional and hierarchical structures are discussed.
[S1063-651%98)13808-4
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[. INTRODUCTION tion, in Refs[8,9], one- and multiscale fractal energy spectra
were studied within Boltzmann statistics. It was shown that

Quasiperiodic structures have been studied intensively ithe scale invariance of the spectrum has strong consequences
the last 15 years. Aside from their purely theoretical intereston the thermodynamical quantities. In particular, the specific

these studies were in part motivated by the discovery of th@eat oscillates log periodically as a function of the tempera-
ture. Moreover, general scaling arguments and a detailed

perimental realization of quasiperiodic superlattices, ﬁrstanalysls_of the |_nt_egrated density of state_s a_llowed for a
quantitative prediction of the average valuehich is related

achieved in 1985 by Merlin and collaborat¢gs. In turn, the h densitv of iod and litude of th
rich properties of these structures encouraged the study %?S:;n;?gﬁ;age ensity of stajeperiod and amplitude of the

systems based on alternative seque ., Thue-Morse . . .
y quentees In this paper we extend the analysis[8f9] to N-particle

and hierarchical which, in spite of not being quasiperiodic, . L
A P g4 b systems described byuantumstatistics. We present results

still exhibit deterministic(or “controlled”) disorder, i.e., ; . . .
they are neither random nor periodic. One of the most inter¢0NceMiNg the .relevant thermogiynammal quantities, 1.e.,
chemical potential, average particle number, and specific

esting features that many of these problef@isher experi- " o lusion is that for bh 4 for b )
mental or theoreticaldisplay is a fractal spectrum of excita- "€at- Our conclusion is that for phonons, and for bosons in
general, the Boltzmann scenario survives the inclusion of

tions. For instance, experiments on Thue-Mof8¢ and . i

Fibonacci[2] superlattices have uncovered scale invarianflu@ntum symmetries. That is, the crudésower-law ap-
energy spectra. Numerical analysis of linear chains of harProximation to the density of states leads to a correct predic-
monic oscillators with hierarchical nearest-neighbor cou-t'on. OT the average behav!or of the specific heat. Log-
plings and equal masses exhibit spectra related to the triadR€M0dic oscillations decorating the average value are well
Cantor se{4] (the Cantor-like structure is preserved even if reproduced whe_n the simplest nontr_lwal corrections to th_e
masses are also distributed in a hierarchical y&y. It has power-law density of states are considered. In the electronic

also been proved that the energy spectrum of a chain made 67S€ the presence of a Fermi surface makes the thermody-

identical springs and of masses of two different kinds ar_namical quantities very sensitive to the particle number, thus

ranged after the Thue-Morse sequence is a Cantor-like s@f€venting the use of smooth approximations. However, for

[6]. special cases, interesting regularities can still be observed.
Even though controlled disorder typically leads to multi- "€ paperl|s orgamze]fi zs follot\)/:/s. In Sec. Ilkwe d'scuﬁs

fractal spectra, in some cases only a few scales are sufficiefPMe 9eneral aspects of the problem. We make as well a

for a satisfactory understanding of their thermodynamicsSnOrt revision of previous results, which will be useful in

For instance, the phonon spectrum of the chair(4h is subsequent sections. In particular, we introduce the spectra

essentially a one-scale Cantor set; the electronic spectra th i W'" be considered and describe their significant chara(_:-
arise from Fibonacci tight-binding Hamiltoniarsither on- teristics. In Sec. Il we treat the phonon case, whose essential

site or transferare governed by a couple of scale factiots features can_b(_a explained analytically by means pf Sca”.”g
Within this context, few-scale fractal spectra constitute?'9Uments similarly to the Boltzmann case. Section IV is

simple prototypes for testing the thermodynamical implica—deVOted. to E:loségenlerql cas)eandkFermi statistics. Section
tions of deterministic disorder. As a first step in this direc-V contains the concluding remarks.

II. GENERAL CONSIDERATIONS

*Electronic address: vallejos@cat.cbpf.br We consider a spectrum constituted by levels lying on a
"Electronic address: celia@cat.cbpf.br (rq,r,) fractal sef10]. Such a spectrum can be constructed
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n=0 n=1 n=2 n=3 The parametera=~1, b, and ¢ are functions of botl, and

r, and result from a detailed analysis of the exact spectral
staircase. The smooth cumulative den¢ityallows for ana-
lytical manipulations while still keeping the principal ingre-
dients of the self-similar spectrum. In fact, in the Boltzmann
case, the use of EqR) together with a perturbative approach
leads to an accurate expression for the specific heat per par-

_ ticle as a function of the temperatufe
FIG. 1. The two-scale energy spectrum. Shown are the first

hierarchies in the construction of a,(r,) fractal spectrum. The c(T)~d+a’cogw In T—¢), 4
initial pattern @=0) was chosen as a set of two levels,

{el?,eV}={0A}. At generationn, 2" * new gaps(in gray) ap-  wherea’<d is a function ofr, andr, [9]. Equation(4)
pear. The(positive scale factors are restricted by the condition relates explicitly the log-periodic nature of the specific heat
ri+rp<1. to that of the spectral staircase.

0]

recursively starting from an arbitrary discrete set of levels IIl. PHONON STATISTICS

{eY belonging to the interval[0,A]. The hierarchy

{1} consists of two pieces that are obtained by com- A standard way to study the acoustic properties of a lat-
pressing the Sqtf(n)} by factorsrl andrz' respective|y_ The tice is .tO consider a nearest-nEighbor harmqnic chain. This
lowest end of the first piece is positionedeat 0, the upper ~Model is represented by the equation of motion

end of the second piece is positionedAatsee Fig. 1. The

2
fractal that arises in the limit— o has a(Hausdorfj dimen- d“y

. . o de , d A .j M —— =Kj jraljrat Ky joaUj- 1= (Kj et K - U,
siond; given implicitly byr "+r,'=1. In the particular one- dt

scale case, i.er,;=r,=r, one has the explicit resutt;= 5

—In 2/Inr. An alternative way of viewing the construction of
the fractal is that in terms of gaps and “bands.” At hierarchy
n there are 2—1 gaps(in gray in Fig. 3, which define 2

whereu; is the displacement of thgth atom (of massm;)
from its equilibrium positionk; j-; are the strengths of the

“bands” (in white). Whenn is increased by one, the preex- couplings between neighboring atoms. Deterministic disor-

istent gaps remain untouched, but each band splits into twger is introduceq by requiring the masses and{or the gtrengths
new ones and a new gap appears to follow substitutional(e.g., Thue-Morse, Fibonacci, Fi-

We expect the thermodynamical properties associated t O”QCCi clas§12]) or hierarchical sequences. As_suming that
this spectrum to depend only on its hierarchical organizatioﬁ e time depend.ence n E@ goes Ilkeujuexp(—l@t), the_
and not on the specific pattern for=0 [9]. For this reason, stationary equation of motion is obtained. Upon d@gonahza—
and for the sake of notation simplicity, we will take(®)} tion one calculates the normal modes and the _elgenfrequen-
—{0,A} (so that there are™ ! levels at generatiom). In €S- In the case of Thue-Morsgs], Fibonacci[13-16,
addition, we make\=1 andkg=1 (kg stands for Boltz- and Fibonacci-clasgl7] sequences the spectrum of energies
mann'’s ;:onstamtthroughout thg paperB e=fo has a Cantor-like structure only in tishort wave-

A very useful tool in describing Boltzmann systems with length regime. For long wavelengths the number of gaps and

. - - their sizes tend to zero and one recovers the standard results
gg%aeldsgtsactra[&g] is the integrated density of statéq(e) for the periodic lattices. On the other side, the hierarchical

chains of Refs[4,5] do possess spectra with uniform scaling

of the type ¢,r,). For these cases we can apply the formal-

J\/(e)EJEde’D(e’), (1) ism of [9] to obtain an explicit expression for the specific
0 heat. The specific heat per atar(ir) is calculated as

2n+1 5

: (6)

whereD (€) is the one-particle state density. In spite of the
very fragmented structure of the density of staf@sset of c(T)= il Z
delta functions with fractal supp9rta smooth approximation =
is usually good enough for computing integral quantities
e.g., the specific heat. In the present case, the scaling pr
erties of the spectrum imply that in a log-log pl&t €) looks

like a self-similar staircase with a fractional average slope. |

first-order log-periodic corrections are included, we obtain a.
smooth approximation of the fori®]

Sinh(¢;/2T)

'where the summation runs over all energy levels afar()
OBactal of nth generation. In Fig. 2 we illustrate the depen-
ence of the specific he&) with temperature for different
alues of ¢,,r,). Logarithmic scales have been used to
learly display that, in the low temperature reginle<{1),
(a) ¢(T) increases on average as power lahy; there are
nel d log-periodic corrections to the average power law. Ass
Me)2"" ' ~e[a+b cogw In e~ ¢)]. (2 lowered this behavior persists down to a minimum tempera-
ture T,i,~r}, corresponding to the smallest scale of the frac-
The so-called spectral dimensidr{11] and the frequency  tal truncated at hierarchy (when n—o, T,,—0). Of
arise from simple scaling arguments, yielding course, for high temperature§%1), the classical result
¢(T)=1 for a one dimensional lattice is recovered. Features
d=-In2/nr;, w=-2n/nr,. 3 (a) and (b) can be shown to be a direct consequence of the
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a’ 1 (= d+1 1

b’ ZZI de cogw In x) (9)
o 0 sinkr(x/2) sin(w In X)

Equation(8) is the phonon analog of the Boltzmann result
(4). It displays explicitly the average behavior of the specific
heat and the log-periodic corrections. In Fig. 2 we have plot-
ted the analytical curve@®) for the same set of scaling fac-
tors used for the numerically exact calculations. For low
temperatures, the agreement between the exact and analytical
results is very goofinotice that the disagreement in the mean
value for the (0.30,0.15) case actually corresponds to a 3%
error]. The scale factor, is responsible for the period of the
oscillations throughw= —2#/Inr; [as shown in Fig. @)

the period decreases agincreases Moreover, ag; con-

trols the gap scaling with respect 16=0, smallerr; values
imply comparatively bigger gaps, and, in turn, bigger ampli-
tudes. For fixedT, decreasing; causes the spectrum to
shrink towardse=0, as a consequence the specific heat
grows. These are the features observed by Petri and Ruocco
in their paper on one-dimensional chains with hierarchical
couplings[4]. We can now understand quantitatively their
results as being a direct consequence of log-periodic correc-
tions to the pure power-law scaling of the density of states

2.

IV. BOSE AND FERMI STATISTICS

The statistical problem of particles with nonidentically
null chemical potential stands at the next level of complex-
ity, both from analytical and numerical points of views. As
in this case analytical derivations seem not feasibkeept
in limiting regimes, so we resort to a numerical procedure.

plot of the specific heat per atom vs temperature. The curves argqg, g fixedaveragenumber of particledN we extracted the

parametrized by the scale factors (r,) indicated in the figure(b)
¢(T)/T%vs InT. In all cases=9. Full lines correspond to numeri-
cal results(6) and dotted ones to our analytical predicti(8),
which is valid only for low temperaturdshis is the reason why the
analytical curves do not saturate at high temperajures

chemical potentialw as a function of the temperature by
solving the equation

2n+1

N= D, !

S1 el miTxq’ (10

log periodicity of the spectral staircase, which is captured by
the smooth approximatiof®). In order to show that this is where the sum runs over the levels of the fractal truncated at

the case let us first rewrite E) as an integral:

1 1
2n+1J;

Now we make two approximations in E¢7). First, we re-
place the exactV(€) by its smooth versiorf2). Second, as
our interest is the lowF regime, we extend the upper inte-
gration limit to infinity (this is equivalent to considering an
unbounded fractal spectrymAfter some simple algebra we
arrive at

€l2T

c(M= Sinh( e/2T)

@)

2
} dMe).

c(T)~Td[a"+b"codw In T—¢)+c"sin(w In T— ¢)].
(8)

Here a”"=aa’, b"=b(b’'—c'w/d), and c"=-b(c’
+b’w/d); the parametera’, b’, ¢’ are given by

hierarchical depthn. The sign +/— corresponds to the
Fermi/Bose casgWe are not taking into account spin de-
generacies, which will not modify our resuftd he numeri-

cal solution of Eq(10) is not a difficult task, however, some
care has to be taken with the choice of an appropriate initial
value for . Once the chemical potential has been obtained,
the specific heat can be calculated asThaerivative of the
averagetotal energyE(T),

2n+l

E(T)= 2,

=1

S N 11
ele=miMeq’ a1y

A. Bosons

Even though bosonic excitations with non-null chemical
potential do not seem to be of main relevance for the ther-
modynamics of superlattices, we decided to include a discus-
sion on this topic for reasons of completeness, and because
bosons in a fractal spectrum display a paradigmatic behavior.
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i FIG. 4. Bosons in a two-scale fractal spectrum. Log-log plot of
] the exact specific heat per partid€T) vs T, for different values of
0.6 256 | average particle numbét (full lines). Dotted lines represent a cal-
| culation that uses the cumulative density of sté®sThe horizon-
] tal line isc(T)=d, which is the classical average value for Igw
Z 0.4 128 - At high temperature, the specific heat decays according to the clas-
50 ] sical 1/T? law. Scale factors are {,r,) = (1/5,1/3). The fractal has

depthn=9. Base-5 logarithms were used to show that there is one
0.2 A - oscillation per “decade.”
2 1 I first nontrivial correction to the power-law scaling to explain
0 — the oscillations[It is worth pointing out that this scenario
breaks down in the fermionic cagsee latex]. We have
3 0 3 tested that the curves in Fig. 4 do not change in the thermo-
InT dynamical limit of increasing botN and the hierarchy but
keepingN* =N/2"*1 fixed, except that the oscillatory be-
FIG. 3. Bosons in a two-scale fractal spectrum. Fugaziis  havior extends to lower temperatures of the orderofthe
InT, for different values of particle numbex (indicated in the  {5t3| number of oscillations of the specific heat is equal to the
figure). The chosen scales arer;(r;)=(1/3.0.2) in (@ and  genihn). The relative particle numb@* plays the role of a
(0.02,0.2) in(b). In both casesi=7. density, given that the number of levels below a certain en-
ergy grows with the volume of the system. Whaif is
The dependence of the fugacig=exp(u/T) with tem-  sufficiently small and the temperature is high enough, the
perature is illustrated in Fig.(8). Several curves, param- curves tend to those for the Boltzmann statist&9]. This is
etrized by the average particle numhiigrdicated in the fig- analogous to the usual statement that the parameter
ure) have been drawn. First of all, Fig.(8 displays the (where\ andp are the thermal length and the density, re-
following limiting features. AsT decreases, and the system spectively tells how good is the classical approximation.
evolves towards condensation, the chemical potential in- Although an analytical description of the problem is lack-
creases from negative values up to a limiting value close ting, our numerical calculations show that log periodicity is
zero(we recall that our lowest energy é=0). The number robust enough to resist the inclusion of bosonic symmetries
of particles in the condensate is given biy=2z/(1—2z). together with the restriction of particle conservation.
Thus, for very lowT, together with largeN, one hasz~1
—1/N. In the opposite limit of high temperatures and small B. Fermions

H * — n+1 H
\'/\lvé Ohnai/gl?ﬁégse;rc;msriijj?-(\?afl; N f t;’\s”hzow ir:gtl:l?r; d:zz)d The results presented in this section are valid for fermions
o M in general, however, we assume that the fraatalr(,) cor-

oscillates as th_e temperature gets through the scales of trngponds to the electronic spectrum of a certain superlattice.
spectrum. In this sense, Fig(l3 can be thought as an am-

olified version of Fig. &. From the theoretical point of view, such spectra appear in the

o . simplest model for studying the electronic properties of a
The dependgnce of th? spemflc heat per particle on thFattice, i.e., a stationary tight-binding equation, for instance,
temperature is illustrated in Fig. 4. Shown are the exact re- . I

; . . In its transfer version:

sult and the numerical calculation, which uses the smooth
expression(2) for the _spectral staircase. For low tempera- a1t 1= €y, (12)
tures the agreement is excellent. It is clear that the mean
value of the specific heat is indeed associated to the averagenere; denotes the wave function at sitend{t;} are the

level density and that it suffices to take into account only thenopping matrix elements. If these hopping elements are ar-

-6 -
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FIG. 5. Fermions in a fractal spectrum. Chemical potentials FIG. 7. Fermions in a fractal spectrum. Log-log plot of the
a function of log T for all integer particle numbersIN=<2""!  specific heat versus temperature. The reduced numbers of particles
=128 (increasing from bottom to t9pWe have only plotted the are N* =1/32,1/16,15/16,31/32, and the scale factoys-1/3, r,
lower part of the full figure because it is symmetric with respect to=1/9. The horizontal lines represent the classical average value for
#=0.5. Parameters arg=r,=1/3,n=6. the appropriate number of “hot” electronsNt =1/32,1/16) or
holes (N* = 15/16,31/32).
ranged according to the Fibonacci sequence, the spectrum of

energies{e} is essentially a fractal of the type(.r;) (see, takes the value corresponding to the middle of the gap
e.g.,[7]), independently of the boundary conditions. How- (¢ ¢ ), as happens, e.g., in intrinsic semiconductors. In
ever, the simple scaling is lost if the more general Fibonaccigrger to keepN fixed as temperature grows, the Fermi sur-
class[12] sequences are considered. . face moves in the direction of the lowest density of levels,

The numerical scheme used for computing the thermodymtegrated over an energy intervel The relative concentra-
namical quantities in the bosonic case can be easily adaptn of levels in the neighborhood of the gap is a fluctuating
to the electronic problem. Figures 5 and 6 exhibit some refnction of the scal&kgT. This gives rise to an oscillatory
lations among chemical potential, average number of par- process that persists untl overcomes the largest gap
ticles N, and temperature for thie,=r,=1/3 case. Finger- (logs T~—1). From this point on, iN*>0.5 (N* <0.5), u
prints of the fragtal spectrum are clearly seen in théends in a monotonic way te-o (—o). For smaller values
dependence of. with temperature(Fig. 5). In the limit of 4 oscillations inw are magnified(not shown, analo-
zero temperature, for a given integer particle numiden gously to what happens with bosons.

Figure 6 displays the chemical potential as a function of
P RPN TN R the reduced number of particlés® for three values of fixed
temperature. This figure gives some insight into the difficul-
ties involved in solving Eq(10). For low (fixed) tempera-
tures,u(N) tends to the spectral staircase and the numerical
problem gets relatively difficult. As temperature grows the
staircase gets smoother and numerics simplify. We have
takenN to be continuous, but observe that for inteteand
low temperaturescompared to the gap sigthe curves pass
through the middle of the gaps, as is clear in Fig. 5.

The specific heat in the fermionic problem depends
strongly on the position of the Fermi surface. Thus, we begin
by analyzing some simple cases where the number of par-
ticles takes special values. For this purpose it is useful to
recall the picture of bands and gaps of Fig. 1. Each gap
determines a special number of particl$, namely, the
relative number of particles that would lie below that gap at

lo N* T=0. For instance, the first-generation gap determiNés
92 _ _ Nk
=1/2. Then=2 gaps correspond with* =1/4,3/4. Con-

FIG. 6. Fermions in a fractal spectrum. Log-log plot of the Versely, the denominator and the numeratoNih indicate
chemical potential vs the reduced number of particlés for ~ respectively the generatiom of a gap and the number of
fixed temperature. The curves correspondto3~%, 376 and 33 filled bands ofnth generation, e.gN* =1/32=1/2° corre-
(smoother curves correspond to higher temperat@eay lines in-  sponds to a gap thappearedin the fifth generation and to
dicate the energy levels. We useg=r,=1/3 andn=4. one filled band of fifth generation.

3

—6 T v v M 1
-10 -5
logs T
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FIG. 8. Analogous to Fig. 7 but for the particle numbé&t¥ FIG. 9. Fermions in a fractal spectrum. Log-log plot of the
=7/64,57/64(see text specific heat vs temperature for the numbbirs 25,77, and the

scale factors;=1/3,r,=1/9 (n=7).

A first example that illustrates the structure of the specific
heat is depicted in Fig. 7. There we consider a spectrum witlhature and govern the specific heat until the temperature be-
two different scales,=1/3,r,=1/9, and the selected set of comes of the order of - . At this point electrons are able to
numbersN* =1/32,1/16,15/16,31/32. For the first two cases,jump up over the third-generation gap between the eighth
N* =1/32,1/16, the size of the gap is of the order of theand ninth bands. The high{T>3"*) oscillations are asso-
Fermi temperatur@: . Once the temperature overcomes theciated to electronic excitations through the third-, second-,
width of that gap, the electrons can fully access the nexand first-generation gaps. Similar considerations apply to the
band above, so that the mean level occupation drops approxtomplementary cadd* =57/64. The horizontal lines in Fig.
mately to 1/2. From then on the electrons behave essentiall§ correspond to our predictions for the average specific heat,
as Boltzmann particles: the specific heat oscillates around which take into account the effective number of electrons or
constant average value, as expressed by4qThe average holes that contribute to the specific heat in each regiifiee
value and the period are governed by the scaling factor fact that the casBl* =7/64 presents one less oscillation than
=1/3 through Eq(3). The number of oscillations is equal to its complementary is due to an overlap of temperature scales
the generation index: four if N*=1/16 and five ifN* in the transition from hole to electron behavjor.
=1/32. The case of numbel$* =31/32,15/16 is equivalent The general case of an arbitrary number of particles
to having respectivelyN* =1/32,1/16holesand it is then shows a nontrivial mixture of the simple behaviors described
complementary to the previous one. Remarkably, in the caskefore. However, the gross features of the specific heat for
of holes, the dominant scaleiis. The reason for this is that arbitrary N can be qualitatively(and sometimes guantita-

r, rules the scaling with respect to the upper edge of thdively) understood as being a reflection of sequences of elec-
spectrum, and, in fact, with respect to the upfdewer) edge tronic and hole excitations that alternate themselves in pro-
of every bandgap); in other wordsy , is the relevant factor ducing the oscillatory patterns shown in Fig. 9. Formulations
for negativetemperatures. Equation®) and (4) are still based on smooth approximations to the density of states,
valid provided thar, andr, are interchanged. According to analogous to those made for bosons, are bound to fail in the
these arguments, the choicg= ri implies that the period of fermionic case. The intrinsic discontinuity of the Fermi prob-
the oscillations for holes is twice that for electrons, which islem, which is critically enhanced by the dual scaling respect
confirmed by our calculationgsee Fig. 7. Horizontal lines  to the lower and upper edges of the gaps, is in essence non-
correspond to the Boltzmann average result, properly norcompatible with smooth approximatiowith the exception
malized in the case of holes. Increasing the hierarmtand  Of too special casgs

keepingN* fixed does not change Fig. 7 because the gap on
top of the filled band determines the smallest scale of the
fractal that can be resolved.

Other special particle numbers allow for observing a We have analyzed the quantum statistics of model sys-
mixed electron-hole behavior. Let us consider, for instancetems exhibiting two-scale fractal spectra, with special em-
the caseN* =7/64,57/64, corresponding, respectively, to 7phasis on the structure of the specific heat. Our findings ex-
and 57 filled bands of sixth generatidfig. 8. For N* tend previous results on classical statistics to show that the
=7/64, the Fermi temperature is several scales bigger thamermodynamical manifestations of spectral fractality are ro-
the width of the seventh gap, so that the [dwpart of the  bust with respect to the inclusion of quantum symmetries.
specific heat is associated to hole excitations jumping fronThe general scenario for Boltzmann and bosonic particles
the (empty eighth band down over the sixth-, fifth-, and can be summarized as follows. In spite of the very frag-
fourth-generation gaps. These excitations are of Boltzmanmented structure of the real density of states, a formulation

V. CONCLUDING REMARKS
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that starts from a smooth approximation but takes into actems, e.g., in the Fibonacci superlatti¢g@s18]. In fact, al-
count the coarsest log-periodic fluctuations is sufficient for ahough our discussion was restricted to perfect deterministic
good description of the specific heat and other averagedystems, both experiments and numerical simulations by
guantities. In the case of fermions, even if a treatment that i§odd et al.[18] indicate that the hierarchical organization of
uniform in the particle number is not possible, many featureshe electronic bands may be preserved even if substantial
of the problem can be understood with the help of the simplemounts ofrandom disorder are added to the system. From
results for the Boltzmann case. a more general point of view, Saleur and Sorngi@] have

Our analysis was limited to two-scale fractals. Previousdemonstrated that the connection between discrete scale in-
results[9] indicate that provided the scaling towards the in-variance and log-periodic oscillations is robust with respect
ferior limit of the spectrum is uniform, the inclusion of ad- to the presence of disorder.
ditional scales will not change our conclusions in what con-
cerns the bosonic case. Fermions, however, can feel the
scaling with respect to any point of the spectrum. So, the
complexity of the fermionic problem would be proportional We acknowledge the Brazilian agencies FAPERJ, CNPq,
to the number of relevant scales, in spite of uniform zero-and PRONEX for financial support. Also acknowledged is
energy scaling. the kind hospitality we received at the Centro Brasileiro de

Let us finish by mentioning that the log periodicities de- Pesquisas Bicas, where part of this work was done. We
scribed in this paper may be observable in real physical syghank C. H. Lewenkopf for useful remarks.
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