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Thermodynamical fingerprints of fractal spectra
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We investigate the thermodynamics of model systems exhibiting two-scale fractal spectra. In particular, we
present both analytical and numerical studies on the temperature dependence of the vibrational and electronic
specific heats. For phonons, and for bosons in general, we show that the average specific heat can be associated
to the average~power law! density of states. The corrections to this average behavior are log-periodic oscil-
lations, which can be traced back to the self-similarity of the spectral staircase. In the electronic problem, even
if the thermodynamical quantities exhibit a strong dependence on the particle number, regularities arise when
special cases are considered. Applications to substitutional and hierarchical structures are discussed.
@S1063-651X~98!13808-4#
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I. INTRODUCTION

Quasiperiodic structures have been studied intensivel
the last 15 years. Aside from their purely theoretical intere
these studies were in part motivated by the discovery of
quasicrystalline state@1# together with the possibility of ex
perimental realization of quasiperiodic superlattices, fi
achieved in 1985 by Merlin and collaborators@2#. In turn, the
rich properties of these structures encouraged the stud
systems based on alternative sequences~e.g., Thue-Morse
and hierarchical!, which, in spite of not being quasiperiodic
still exhibit deterministic~or ‘‘controlled’’ ! disorder, i.e.,
they are neither random nor periodic. One of the most in
esting features that many of these problems~either experi-
mental or theoretical! display is a fractal spectrum of excita
tions. For instance, experiments on Thue-Morse@3# and
Fibonacci @2# superlattices have uncovered scale invari
energy spectra. Numerical analysis of linear chains of h
monic oscillators with hierarchical nearest-neighbor co
plings and equal masses exhibit spectra related to the tri
Cantor set@4# ~the Cantor-like structure is preserved even
masses are also distributed in a hierarchical way@5#!. It has
also been proved that the energy spectrum of a chain mad
identical springs and of masses of two different kinds
ranged after the Thue-Morse sequence is a Cantor-like
@6#.

Even though controlled disorder typically leads to mu
fractal spectra, in some cases only a few scales are suffic
for a satisfactory understanding of their thermodynam
For instance, the phonon spectrum of the chain in@4# is
essentially a one-scale Cantor set; the electronic spectra
arise from Fibonacci tight-binding Hamiltonians~either on-
site or transfer! are governed by a couple of scale factors@7#.

Within this context, few-scale fractal spectra constitu
simple prototypes for testing the thermodynamical implic
tions of deterministic disorder. As a first step in this dire
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tion, in Refs.@8,9#, one- and multiscale fractal energy spec
were studied within Boltzmann statistics. It was shown th
the scale invariance of the spectrum has strong conseque
on the thermodynamical quantities. In particular, the spec
heat oscillates log periodically as a function of the tempe
ture. Moreover, general scaling arguments and a deta
analysis of the integrated density of states allowed fo
quantitative prediction of the average value~which is related
to the average density of states!, period and amplitude of the
oscillations.

In this paper we extend the analysis of@8,9# to N-particle
systems described byquantumstatistics. We present result
concerning the relevant thermodynamical quantities, i
chemical potential, average particle number, and spec
heat. Our conclusion is that for phonons, and for bosons
general, the Boltzmann scenario survives the inclusion
quantum symmetries. That is, the crudest~power-law! ap-
proximation to the density of states leads to a correct pre
tion of the average behavior of the specific heat. Lo
periodic oscillations decorating the average value are w
reproduced when the simplest nontrivial corrections to
power-law density of states are considered. In the electro
case, the presence of a Fermi surface makes the therm
namical quantities very sensitive to the particle number, t
preventing the use of smooth approximations. However,
special cases, interesting regularities can still be observe

The paper is organized as follows. In Sec. II we discu
some general aspects of the problem. We make as we
short revision of previous results, which will be useful
subsequent sections. In particular, we introduce the spe
that will be considered and describe their significant char
teristics. In Sec. III we treat the phonon case, whose esse
features can be explained analytically by means of sca
arguments similarly to the Boltzmann case. Section IV
devoted to Bose~general case! and Fermi statistics. Sectio
V contains the concluding remarks.

II. GENERAL CONSIDERATIONS

We consider a spectrum constituted by levels lying on
(r 1 ,r 2) fractal set@10#. Such a spectrum can be construct
4134 © 1998 The American Physical Society
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PRE 58 4135THERMODYNAMICAL FINGERPRINTS OF FRACTAL SPECTRA
recursively starting from an arbitrary discrete set of lev
$e (0)% belonging to the interval@0,D#. The hierarchy
$e (n11)% consists of two pieces that are obtained by co
pressing the set$e (n)% by factorsr 1 andr 2, respectively. The
lowest end of the first piece is positioned ate50, the upper
end of the second piece is positioned atD ~see Fig. 1!. The
fractal that arises in the limitn→` has a~Hausdorff! dimen-
siondf given implicitly by r 1

df1r 2
df51. In the particular one-

scale case, i.e.,r 15r 2[r , one has the explicit resultdf5
2 ln 2/ln r. An alternative way of viewing the construction o
the fractal is that in terms of gaps and ‘‘bands.’’ At hierarc
n there are 2n21 gaps~in gray in Fig. 1!, which define 2n

‘‘bands’’ ~in white!. Whenn is increased by one, the pree
istent gaps remain untouched, but each band splits into
new ones and a new gap appears.

We expect the thermodynamical properties associate
this spectrum to depend only on its hierarchical organiza
and not on the specific pattern forn50 @9#. For this reason,
and for the sake of notation simplicity, we will take$e (0)%
5$0,D% ~so that there are 2n11 levels at generationn). In
addition, we makeD51 and kB51 (kB stands for Boltz-
mann’s constant! throughout the paper.

A very useful tool in describing Boltzmann systems w
fractal spectra@8,9# is the integrated density of statesN(e)
defined as

N~e![E
0

e

de8D~e8!, ~1!

whereD(e) is the one-particle state density. In spite of t
very fragmented structure of the density of states~a set of
delta functions with fractal support!, a smooth approximation
is usually good enough for computing integral quantiti
e.g., the specific heat. In the present case, the scaling p
erties of the spectrum imply that in a log-log plotN(e) looks
like a self-similar staircase with a fractional average slope
first-order log-periodic corrections are included, we obtai
smooth approximation of the form@9#

N~e!/2n11'ed@a1b cos~v ln e2f!#. ~2!

The so-called spectral dimensiond @11# and the frequencyv
arise from simple scaling arguments, yielding

d52 ln 2/ln r 1 , v522p/ ln r 1 . ~3!

FIG. 1. The two-scale energy spectrum. Shown are the
hierarchies in the construction of a (r 1 ,r 2) fractal spectrum. The
initial pattern (n50) was chosen as a set of two leve
$e1

(0) ,e2
(0)%5$0,D%. At generationn, 2n21 new gaps~in gray! ap-

pear. The~positive! scale factors are restricted by the conditi
r 11r 2<1.
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The parametersa'1, b, andf are functions of bothr 1 and
r 2 and result from a detailed analysis of the exact spec
staircase. The smooth cumulative density~2! allows for ana-
lytical manipulations while still keeping the principal ingre
dients of the self-similar spectrum. In fact, in the Boltzma
case, the use of Eq.~2! together with a perturbative approac
leads to an accurate expression for the specific heat per
ticle as a function of the temperatureT:

c~T!'d1a8cos~v ln T2f!, ~4!

where a8!d is a function of r 1 and r 2 @9#. Equation~4!
relates explicitly the log-periodic nature of the specific he
to that of the spectral staircase.

III. PHONON STATISTICS

A standard way to study the acoustic properties of a
tice is to consider a nearest-neighbor harmonic chain. T
model is represented by the equation of motion

mj

d2uj

dt2
5kj , j 11uj 111kj , j 21uj 212~kj , j 111kj , j 21!uj ,

~5!

whereuj is the displacement of thej th atom ~of massmj )
from its equilibrium position.kj , j 61 are the strengths of the
couplings between neighboring atoms. Deterministic dis
der is introduced by requiring the masses and/or the stren
to follow substitutional~e.g., Thue-Morse, Fibonacci, Fi
bonacci class@12#! or hierarchical sequences. Assuming th
the time dependence in Eq.~5! goes likeuj}exp(2ivt), the
stationary equation of motion is obtained. Upon diagonali
tion one calculates the normal modes and the eigenfreq
cies v. In the case of Thue-Morse@6#, Fibonacci@13–16#,
and Fibonacci-class@17# sequences the spectrum of energ
e5\v has a Cantor-like structure only in theshort wave-
length regime. For long wavelengths the number of gaps
their sizes tend to zero and one recovers the standard re
for the periodic lattices. On the other side, the hierarchi
chains of Refs.@4,5# do possess spectra with uniform scalin
of the type (r 1 ,r 2). For these cases we can apply the form
ism of @9# to obtain an explicit expression for the specifi
heat. The specific heat per atomc(T) is calculated as

c~T!5
1

2n11 (
j 51

2n11 F e j /2T

sinh~e j /2T!G
2

, ~6!

where the summation runs over all energy levels of a (r 1 ,r 2)
fractal of nth generation. In Fig. 2 we illustrate the depe
dence of the specific heat~6! with temperature for different
values of (r 1 ,r 2). Logarithmic scales have been used
clearly display that, in the low temperature regime (T!1),
~a! c(T) increases on average as power law;~b! there are
log-periodic corrections to the average power law. AsT is
lowered this behavior persists down to a minimum tempe
tureTmin'r1

n , corresponding to the smallest scale of the fra
tal truncated at hierarchyn ~when n→`, Tmin→0). Of
course, for high temperatures (T@1), the classical resul
c(T)51 for a one dimensional lattice is recovered. Featu
~a! and ~b! can be shown to be a direct consequence of

st
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log periodicity of the spectral staircase, which is captured
the smooth approximation~2!. In order to show that this is
the case let us first rewrite Eq.~6! as an integral:

c~T!5
1

2n11E0

1F e/2T

sinh~e/2T!G
2

dN~e!. ~7!

Now we make two approximations in Eq.~7!. First, we re-
place the exactN(e) by its smooth version~2!. Second, as
our interest is the low-T regime, we extend the upper inte
gration limit to infinity ~this is equivalent to considering a
unbounded fractal spectrum!. After some simple algebra w
arrive at

c~T!'Tdd@a91b9cos~v ln T2f!1c9sin~v ln T2f!#.
~8!

Here a95aa8, b95b(b82c8v/d), and c952b(c8
1b8v/d); the parametersa8, b8, c8 are given by

FIG. 2. Phonons in a two-scale fractal spectrum.~a! Log-log
plot of the specific heat per atom vs temperature. The curves
parametrized by the scale factors (r 1 ,r 2) indicated in the figure.~b!
c(T)/Td vs lnT. In all casesn59. Full lines correspond to numeri
cal results~6! and dotted ones to our analytical prediction~8!,
which is valid only for low temperatures~this is the reason why the
analytical curves do not saturate at high temperatures!.
y

F a8

b8

c8
G5

1

4E0

`

dx
xd11

sinh2~x/2!F 1

cos~w ln x!

sin~w ln x!
G . ~9!

Equation~8! is the phonon analog of the Boltzmann res
~4!. It displays explicitly the average behavior of the speci
heat and the log-periodic corrections. In Fig. 2 we have p
ted the analytical curves~8! for the same set of scaling fac
tors used for the numerically exact calculations. For lo
temperatures, the agreement between the exact and anal
results is very good@notice that the disagreement in the me
value for the (0.30,0.15) case actually corresponds to a
error#. The scale factorr 1 is responsible for the period of th
oscillations throughv522p/ ln r1 @as shown in Fig. 2~b!
the period decreases asr 1 increases#. Moreover, asr 1 con-
trols the gap scaling with respect toT50, smallerr 1 values
imply comparatively bigger gaps, and, in turn, bigger amp
tudes. For fixedT, decreasingr 1 causes the spectrum t
shrink towardse50, as a consequence the specific h
grows. These are the features observed by Petri and Ru
in their paper on one-dimensional chains with hierarchi
couplings @4#. We can now understand quantitatively the
results as being a direct consequence of log-periodic cor
tions to the pure power-law scaling of the density of sta
~2!.

IV. BOSE AND FERMI STATISTICS

The statistical problem of particles with nonidentical
null chemical potential stands at the next level of comple
ity, both from analytical and numerical points of views. A
in this case analytical derivations seem not feasible~except
in limiting regimes!, so we resort to a numerical procedur
For a fixedaveragenumber of particlesN we extracted the
chemical potentialm as a function of the temperature b
solving the equation

N5 (
j 51

2n11

1

e~e j 2m!/T61
, ~10!

where the sum runs over the levels of the fractal truncate
hierarchical depthn. The sign 1/2 corresponds to the
Fermi/Bose case.~We are not taking into account spin de
generacies, which will not modify our results.! The numeri-
cal solution of Eq.~10! is not a difficult task, however, som
care has to be taken with the choice of an appropriate in
value form. Once the chemical potential has been obtain
the specific heat can be calculated as theT derivative of the
averagetotal energyE(T),

E~T!5 (
j 51

2n11

e j

e~e j 2m!/T61
. ~11!

A. Bosons

Even though bosonic excitations with non-null chemic
potential do not seem to be of main relevance for the th
modynamics of superlattices, we decided to include a disc
sion on this topic for reasons of completeness, and beca
bosons in a fractal spectrum display a paradigmatic behav

re
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The dependence of the fugacityz5exp(m/T) with tem-
perature is illustrated in Fig. 3~a!. Several curves, param
etrized by the average particle number~indicated in the fig-
ure! have been drawn. First of all, Fig. 3~a! displays the
following limiting features. AsT decreases, and the syste
evolves towards condensation, the chemical potential
creases from negative values up to a limiting value close
zero~we recall that our lowest energy ise50). The number
of particles in the condensate is given byN05z/(12z).
Thus, for very lowT, together with largeN, one hasz'1
21/N. In the opposite limit of high temperatures and sm
N, one obtains from Eq.~10! z→N* [N/2n11. In Fig. 3~b!
we have chosen a small value ofr 1 to show thatm indeed
oscillates as the temperature gets through the scales o
spectrum. In this sense, Fig. 3~b! can be thought as an am
plified version of Fig. 3~a!.

The dependence of the specific heat per particle on
temperature is illustrated in Fig. 4. Shown are the exact
sult and the numerical calculation, which uses the smo
expression~2! for the spectral staircase. For low temper
tures the agreement is excellent. It is clear that the m
value of the specific heat is indeed associated to the ave
level density and that it suffices to take into account only

FIG. 3. Bosons in a two-scale fractal spectrum. Fugacityz vs
ln T, for different values of particle numberN ~indicated in the
figure!. The chosen scales are (r 1 ,r 2)5(1/3,0.2) in ~a! and
(0.02,0.2) in~b!. In both casesn57.
-
to

l
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e
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e

first nontrivial correction to the power-law scaling to expla
the oscillations.@It is worth pointing out that this scenari
breaks down in the fermionic case~see later!#. We have
tested that the curves in Fig. 4 do not change in the ther
dynamical limit of increasing bothN and the hierarchyn but
keepingN* 5N/2n11 fixed, except that the oscillatory be
havior extends to lower temperatures of the order ofr 1

n ~the
total number of oscillations of the specific heat is equal to
depthn). The relative particle numberN* plays the role of a
density, given that the number of levels below a certain
ergy grows with the volume of the system. WhenN* is
sufficiently small and the temperature is high enough,
curves tend to those for the Boltzmann statistics@8,9#. This is
analogous to the usual statement that the parameterl3r
~wherel and r are the thermal length and the density, r
spectively! tells how good is the classical approximation.

Although an analytical description of the problem is lac
ing, our numerical calculations show that log periodicity
robust enough to resist the inclusion of bosonic symmet
together with the restriction of particle conservation.

B. Fermions

The results presented in this section are valid for fermio
in general, however, we assume that the fractal (r 1 ,r 2) cor-
responds to the electronic spectrum of a certain superlat
From the theoretical point of view, such spectra appear in
simplest model for studying the electronic properties o
lattice, i.e., a stationary tight-binding equation, for instan
in its transfer version:

t j 11c j 111t jc j 215ec j , ~12!

wherec j denotes the wave function at sitej and$t j% are the
hopping matrix elements. If these hopping elements are

FIG. 4. Bosons in a two-scale fractal spectrum. Log-log plot
the exact specific heat per particlec(T) vs T, for different values of
average particle numberN ~full lines!. Dotted lines represent a ca
culation that uses the cumulative density of states~2!. The horizon-
tal line is c(T)5d, which is the classical average value for lowT.
At high temperature, the specific heat decays according to the c
sical 1/T2 law. Scale factors are (r 1 ,r 2)5(1/5,1/3). The fractal has
depthn59. Base-5 logarithms were used to show that there is
oscillation per ‘‘decade.’’
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ranged according to the Fibonacci sequence, the spectru
energies$e% is essentially a fractal of the type (r 1 ,r 2) ~see,
e.g., @7#!, independently of the boundary conditions. Ho
ever, the simple scaling is lost if the more general Fibona
class@12# sequences are considered.

The numerical scheme used for computing the thermo
namical quantities in the bosonic case can be easily ada
to the electronic problem. Figures 5 and 6 exhibit some
lations among chemical potentialm, average number of par
ticles N, and temperature for ther 15r 251/3 case. Finger-
prints of the fractal spectrum are clearly seen in
dependence ofm with temperature~Fig. 5!. In the limit of
zero temperature, for a given integer particle numberN, m

FIG. 5. Fermions in a fractal spectrum. Chemical potentialm as
a function of log3 T for all integer particle numbers 1<N<2n11

5128 ~increasing from bottom to top!. We have only plotted the
lower part of the full figure because it is symmetric with respect
m50.5. Parameters arer 15r 251/3, n56.

FIG. 6. Fermions in a fractal spectrum. Log-log plot of th
chemical potentialm vs the reduced number of particlesN* for
fixed temperature. The curves correspond toT5329, 326, and 323

~smoother curves correspond to higher temperature!. Gray lines in-
dicate the energy levels. We usedr 15r 251/3 andn54.
of

i-

y-
ted
-

e

takes the value corresponding to the middle of the g
(eN ,eN11), as happens, e.g., in intrinsic semiconductors.
order to keepN fixed as temperature grows, the Fermi su
face moves in the direction of the lowest density of leve
integrated over an energy intervalT. The relative concentra
tion of levels in the neighborhood of the gap is a fluctuati
function of the scalekBT. This gives rise to an oscillatory
process that persists untilT overcomes the largest ga
(log3 T'21). From this point on, ifN* .0.5 (N* ,0.5), m
tends in a monotonic way to1` (2`). For smaller values
of r 1, oscillations inm are magnified~not shown!, analo-
gously to what happens with bosons.

Figure 6 displays the chemical potential as a function
the reduced number of particlesN* for three values of fixed
temperature. This figure gives some insight into the diffic
ties involved in solving Eq.~10!. For low ~fixed! tempera-
tures,m(N) tends to the spectral staircase and the numer
problem gets relatively difficult. As temperature grows t
staircase gets smoother and numerics simplify. We h
takenN to be continuous, but observe that for integerN and
low temperatures~compared to the gap size! the curves pass
through the middle of the gaps, as is clear in Fig. 5.

The specific heat in the fermionic problem depen
strongly on the position of the Fermi surface. Thus, we be
by analyzing some simple cases where the number of
ticles takes special values. For this purpose it is usefu
recall the picture of bands and gaps of Fig. 1. Each g
determines a special number of particlesN* , namely, the
relative number of particles that would lie below that gap
T50. For instance, the first-generation gap determinesN*
51/2. The n52 gaps correspond withN* 51/4,3/4. Con-
versely, the denominator and the numerator inN* indicate
respectively the generationn of a gap and the number o
filled bands ofnth generation, e.g.,N* 51/3251/25 corre-
sponds to a gap thatappearedin the fifth generation and to
one filled band of fifth generation.

FIG. 7. Fermions in a fractal spectrum. Log-log plot of th
specific heat versus temperature. The reduced numbers of par
are N* 51/32,1/16,15/16,31/32, and the scale factorsr 151/3, r 2

51/9. The horizontal lines represent the classical average value
the appropriate number of ‘‘hot’’ electrons (N* 51/32,1/16) or
holes (N* 515/16,31/32).
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A first example that illustrates the structure of the spec
heat is depicted in Fig. 7. There we consider a spectrum w
two different scalesr 151/3, r 251/9, and the selected set o
numbersN* 51/32,1/16,15/16,31/32. For the first two case
N* 51/32,1/16, the size of the gap is of the order of t
Fermi temperatureTF . Once the temperature overcomes t
width of that gap, the electrons can fully access the n
band above, so that the mean level occupation drops app
mately to 1/2. From then on the electrons behave essent
as Boltzmann particles: the specific heat oscillates aroun
constant average value, as expressed by Eq.~4!. The average
value and the period are governed by the scaling factor 1
51/3 through Eq.~3!. The number of oscillations is equal t
the generation indexn: four if N* 51/16 and five if N*
51/32. The case of numbersN* 531/32,15/16 is equivalen
to having respectivelyN* 51/32,1/16holes and it is then
complementary to the previous one. Remarkably, in the c
of holes, the dominant scale isr 2. The reason for this is tha
r 2 rules the scaling with respect to the upper edge of
spectrum, and, in fact, with respect to the upper~lower! edge
of every band~gap!; in other words,r 2 is the relevant factor
for negative temperatures. Equations~3! and ~4! are still
valid provided thatr 1 andr 2 are interchanged. According t
these arguments, the choicer 25r 1

2 implies that the period of
the oscillations for holes is twice that for electrons, which
confirmed by our calculations~see Fig. 7!. Horizontal lines
correspond to the Boltzmann average result, properly n
malized in the case of holes. Increasing the hierarchyn and
keepingN* fixed does not change Fig. 7 because the gap
top of the filled band determines the smallest scale of
fractal that can be resolved.

Other special particle numbers allow for observing
mixed electron-hole behavior. Let us consider, for instan
the casesN* 57/64,57/64, corresponding, respectively, to
and 57 filled bands of sixth generation~Fig. 8!. For N*
57/64, the Fermi temperature is several scales bigger
the width of the seventh gap, so that the low-T part of the
specific heat is associated to hole excitations jumping fr
the ~empty! eighth band down over the sixth-, fifth-, an
fourth-generation gaps. These excitations are of Boltzm

FIG. 8. Analogous to Fig. 7 but for the particle numbersN*
57/64,57/64~see text!.
c
th

,

xt
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lly
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se

e

r-
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e

e,

an

n

nature and govern the specific heat until the temperature
comes of the order ofTF . At this point electrons are able t
jump up over the third-generation gap between the eig
and ninth bands. The high-T (T.324) oscillations are asso
ciated to electronic excitations through the third-, secon
and first-generation gaps. Similar considerations apply to
complementary caseN* 557/64. The horizontal lines in Fig
8 correspond to our predictions for the average specific h
which take into account the effective number of electrons
holes that contribute to the specific heat in each regime.~The
fact that the caseN* 57/64 presents one less oscillation th
its complementary is due to an overlap of temperature sc
in the transition from hole to electron behavior.!

The general case of an arbitrary number of partic
shows a nontrivial mixture of the simple behaviors describ
before. However, the gross features of the specific heat
arbitrary N can be qualitatively~and sometimes quantita
tively! understood as being a reflection of sequences of e
tronic and hole excitations that alternate themselves in p
ducing the oscillatory patterns shown in Fig. 9. Formulatio
based on smooth approximations to the density of sta
analogous to those made for bosons, are bound to fail in
fermionic case. The intrinsic discontinuity of the Fermi pro
lem, which is critically enhanced by the dual scaling resp
to the lower and upper edges of the gaps, is in essence
compatible with smooth approximations~with the exception
of too special cases!.

V. CONCLUDING REMARKS

We have analyzed the quantum statistics of model s
tems exhibiting two-scale fractal spectra, with special e
phasis on the structure of the specific heat. Our findings
tend previous results on classical statistics to show that
thermodynamical manifestations of spectral fractality are
bust with respect to the inclusion of quantum symmetri
The general scenario for Boltzmann and bosonic partic
can be summarized as follows. In spite of the very fra
mented structure of the real density of states, a formula

FIG. 9. Fermions in a fractal spectrum. Log-log plot of th
specific heat vs temperature for the numbersN525,77, and the
scale factorsr 151/3, r 251/9 (n57).
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that starts from a smooth approximation but takes into
count the coarsest log-periodic fluctuations is sufficient fo
good description of the specific heat and other avera
quantities. In the case of fermions, even if a treatment tha
uniform in the particle number is not possible, many featu
of the problem can be understood with the help of the sim
results for the Boltzmann case.

Our analysis was limited to two-scale fractals. Previo
results@9# indicate that provided the scaling towards the
ferior limit of the spectrum is uniform, the inclusion of ad
ditional scales will not change our conclusions in what co
cerns the bosonic case. Fermions, however, can feel
scaling with respect to any point of the spectrum. So,
complexity of the fermionic problem would be proportion
to the number of relevant scales, in spite of uniform ze
energy scaling.

Let us finish by mentioning that the log periodicities d
scribed in this paper may be observable in real physical
y

at-
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tems, e.g., in the Fibonacci superlattices@2,18#. In fact, al-
though our discussion was restricted to perfect determini
systems, both experiments and numerical simulations
Toddet al. @18# indicate that the hierarchical organization
the electronic bands may be preserved even if substa
amounts of~random! disorder are added to the system. Fro
a more general point of view, Saleur and Sornette@19# have
demonstrated that the connection between discrete scal
variance and log-periodic oscillations is robust with resp
to the presence of disorder.
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